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Abstract

One of the most important attributes of DeFi is the ability to compose relatively simple

financial primitives to create complex financial programs. This is similar to how simple lego

bricks can be assembled to construct a great variety of structures. However, composing

primitives in DeFi is currently a difficult task. Most of the time, end users must send

multiple transactions, waiting idly for one transaction to get mined before starting the next

one. This wastes both time and money (gas). For certain use cases, special-purpose smart

contracts exist to compose primitives (for example, DEX aggregators), but writing a new

smart contract for every permutation of primitive interactions is infeasible. Composability

in DeFi is deficient because financial primitives are implemented as monolithic protocols

while tokens are siloed into separate smart contracts. What we need is an architecture

where all tokens exist on a single smart contract and primitives are modular programs that

share the same accounting logic. We call this system the Ocean. When composing primitives

via the Ocean, no additional smart contracts are necessary and the marginal gas cost per

interaction can be up to four times lower. Any type of primitive can be built on the Ocean:

AMMs, lending pools, algorithmic stablecoins, NFT markets, and even primitives yet to be

invented.

1 Introduction

The purpose of this paper is to reimagine decentralized finance (DeFi) architecture. At a system

level, DeFi should be designed to seamlessly compose financial primitives. Examples of finan-

cial primitives include automated market makers (AMMs)[3][7], lending pools[2][14], algorithmic

stablecoins[16] and non-fungible token (NFT) markets[18], among others. A simple example of

primitive composition is the process of splitting a swap through multiple AMMs to get the best

rate.[13] Another example is borrowing tokens on a lending pool and swapping those tokens

through an AMM in order to gain leverage.[22]

In these examples, we are able to take relatively simple primitives and use them as building

blocks to create complex financial programs. This attribute of DeFi is where the term “money

legos”[23] gets its meaning. Lego bricks are simple shapes that can be assembled to create

complex structures. In DeFi, composability opens the door to financial innovation. High com-
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posability means components are simpler to modify (notably without disruption to the larger

system) and can be assembled in creative and unexpected ways.

Despite its potential, composing primitives in DeFi today is an onerous task. In most cases,

a user will have to interact with one primitive at a time, sending multiple transactions, waiting

idly for each transaction to clear on the blockchain. Not only is this a bad user experience (UX),

it also adds gas costs and precludes use cases where transactions must execute atomically. For

example, we may not want to execute a split swap unless guaranteed both trades will clear.

1.1 Sequencer-Adapter Model

Superficially, composing primitives is difficult because an off-chain user can only invoke one smart

contract per transaction on the Ethereum Virtual Machine (EVM)[9]. The apparent solution to

this problem is to create a special-purpose smart contract which interacts with financial primitives

on the user’s behalf. Smart contracts, unlike users, have the ability to interact with multiple

smart contracts in a single transaction. We refer to this solution as the “sequencer-adapter”

model.

The sequencer smart contract coordinates and executes the interactions, while the adapter

contracts interface with the primitives (Figure 1). Decentralized exchange (DEX) aggregators

such as 1inch[1] and Paraswap[19] are examples of sequencer-adapter platforms. Aggregators

use off-chain algorithms to find the optimal swap split through the myriad AMMs available.

They then use their sequencer-adapter contracts to atomically execute multiple swaps through

multiple AMMs. InstaDapp[12] and Zapper[26] are another such example. These platforms

compose lending pools and AMMs to offer services such as leveraged exposure to popular tokens.

Figure 1: Simplified diagram of sequencer-adapter architecture

With the sequencer-adapter model, what previously took multiple transactions can now exe-

cute in a single, atomic transaction. This approach improves UX and can save moderate amounts

of gas. The problem, however, is that every feature of every protocol requires a custom adapter.

The more primitives we want to interact with, the more smart contracts we need to write and

deploy. By analogy, consider a cable adapter kit that can interface with HDMI, USB, Lightning,
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etc. As more standards are added, our adapter kit grows to an unwieldy size. It’s better than

no connection, but suboptimal compared to a universal cable standard such as USB-C.

1.2 The Deeper Problem

The sequencer-adapter architecture only addresses the superficial problem of users being unable

to interact with multiple smart contracts. Below this lies an even deeper issue involving the sys-

tem architecture of DeFi. The fundamental composability problem stems from two interrelated

sources:

• Each token exists on a unique smart contract

• Primitives are monolithic (versus modular) programs

To understand the problem with token ledgers, consider the popular fungible token standard,

the ERC-20[24], where there is a separate smart contract for each token. This design works fine

for one-off, peer-to-peer transfers, which was its original use case. However, composing primitives

requires invoking multiple transfers between the user and their target primitives.

In the EVM, every time we invoke a new smart contract during a transaction, we must pay

a fixed cost of 2,600 gas to load that contract’s bytecode[6]. On top of that, any token transfer

requires writing data to storage at least twice. A storage write is one of the most expensive

operations in the EVM, costing between 5,000 gas to 20,000 gas[10]. The end result is needless

redundancy leading to excessive costs when composing primitives that will transfer multiple

ERC-20 tokens.

To understand why monolithic primitives are a problem, consider that a financial primitive

can be deconstructed into two parts:

• Accounting logic: moving tokens between accounts

• Business logic: computing how many tokens need to be moved

For example, an AMM has to first calculate an exchange rate (business logic) and then

transfer tokens between itself and the user (accounting logic). A lending pool has to calculate

the interest rate for borrowers and lenders (business logic) and then transfer the tokens to the

user (accounting logic).

Currently, primitives are designed as monolithic programs, grouping both of the above con-

cerns into a single protocol. Separation of concerns exists purely as an internal abstraction, if at

all. This kind of architecture is antithetical to the modular nature of composability. If anything,

the sequencer-adapter model exacerbates system complexity. The combination of siloed token

ledgers and monolithic primitives makes DeFi difficult to reason about, expensive to use, and

very hard to compose.
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1.3 Vault-Router Model

The “vault-router” model for AMMs implemented by Balancer v2[17] and Uniswap v3[4] is an

overall improvement over the sequencer-adapter model. In this architecture, all tokens in the

protocol are held by a vault contract, which serves as a unified accounting system for the AMMs.

AMMs track their balances on an internal ledger maintained by the vault. Users send their swaps

to the router contract, which sequences the execution. If a swap involves routing a trade through

multiple pools, then the inter-pool exchanges are settled on an internal ledger. The vault then

batches the final ERC-20 transfers, minimizing redundant smart contract interactions. Figure 2

shows a simplified diagram of the vault-router architecture. In this way, a user can split swaps

through multiple AMMs, ensuring atomic execution and saving significant amounts of gas.

Figure 2: Simplified diagram of vault-router architecture for AMMs

In addition to gas savings, the vault-router architecture theoretically simplifies the overall

system. The AMMs that integrate with the vault-router do not need to implement their own

accounting logic, so the AMM developers can focus purely on business logic. Furthermore,

composability is inherent to the system. No additional smart contracts are necessary beyond the

core protocol to chain together a sequence of swaps.

However, current vault-router implementations are insufficient. Both Balancer and Uniswap

seem to contain incidental code complexity that is unnecessary to solve the underlying problem.

For example, there is no fundamental reason why the vault and the router contracts cannot be

combined into one contract. In trying to streamline composability, these projects built a system

that is arguably more complex than the one they wanted to replace.

Moreover, both of these implementations can only compose AMMs. In the case of Uniswap,
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the protocol can only handle Uniswap-controlled AMMs, creating a walled garden. At least

the sequencer-adapter model, despite its shortcomings, is flexible enough to interface with any

financial primitive, not just protocol-specific AMMs.

What we need is a solution that can encompass the best of both worlds: one which has the

gas savings of vault-router architecture while maintaining the flexibility of sequencer-adapter

architecture. And crucially, it must simplify the overall system. We call this solution the Ocean.

2 The Ocean

The objective of the Ocean is to create a platform that can compose any type of primitive:

AMMs, lending pools, algorithmic stablecoins, NFT markets, and even future primitives yet to

be invented. It should also support popular token standards: ERC-20, ERC-721[8] and ERC-

1155[20].

2.1 Performance Criteria

The criteria to assess the Ocean’s efficacy compared to other methods are:

• How much gas do we save when composing primitives on the Ocean?

• How much extra smart contract code is required to compose primitives?

Although not a formal criterion, a third consideration which had substantial influence on the

design process is simplicity: How much simpler is the overall system compared to the status

quo? As discussed in Section 1.2, the root of the composability problem stems from a redundant

system architecture. We do not want to replace a flawed system with an even more complicated

design.

2.2 Ocean Architecture

In order to get the efficiency of vault-router combined with the flexibility of sequencer-adapter,

the Ocean must do the following:

• Put all tokens into a single smart contract ledger

• Generalize accounting logic to support any primitive

• When composing primitives, track intermediate balances in memory rather than storage

to save gas

Figure 3 provides an overview of the Ocean’s design. The “vault” equivalent is an ERC-1155

ledger that can wrap and unwrap external tokens (see Section 3). The “router” equivalent is

part of the same smart contract that handles the atomic execution of Ocean-native primitive

interactions (see Section 5). Ocean-native primitives implement the Ocean’s accounting frame-

work using the Ocean’s ERC-1155 ledger (see Section 4). Our user, Alice, can directly interact
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Figure 3: Complete diagram of Ocean architecture

with the Ocean, or she can designate a trusted forwarding contract to interface with the Ocean

on her behalf. Forwarding contracts allow Alice to compose the Ocean with external protocols,

or even compose the Ocean with itself.

2.3 Outline of the Following Sections

The following sections will explain how the Ocean works. They are intended for an audience

with moderate familiarity with Solidity and the EVM. They are meant to be a companion piece

to the source code, providing the intuition behind the implementation. Conceptually, we can

divide our explanation into three main parts:

• Multi-token ledger

• Accounting framework for Ocean-native primitives

• Composing primitives

There is also a section to walk the reader through a simple example. Further examples are

available in Appendix B.

3 Multi-Token Ledger

We chose to implement the Ocean using an ERC-1155 ledger because a single ERC-1155 can

be used to represent tokens from all ERC-20, ERC-721, and ERC-1155 ledgers without any
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loss of information. This is due to a nested mapping architecture that tracks token balances

by mapping a uint256 (token ID) to an address (user’s account) to another uint256 (user’s

balance). For every token ID represented in the ledger, this mapping can track the balances

for all users. To avoid confusion, we will refer to token IDs on the Ocean’s ledger as “Ocean

IDs.” This naming convention distinguishes token IDs on the Ocean from token IDs on external

ERC-721 and ERC-1155 ledgers.

There are two types of tokens in the Ocean’s ledger:

• Tokens from external ledgers, “wrapped tokens”

• Tokens created by Ocean-native primitives, “native tokens”

3.1 Wrapped Tokens

Wrapped tokens are tokens held by the Ocean on an external ledger, with a proportional quantity

represented in the Ocean ledger. We use the prefix “sh-” to denote Shell-wrapped tokens. For

example, shUSDC is USDC wrapped into the Ocean. Ocean IDs for wrapped tokens are derived

from their attributes on the external ledger. For ERC-20 tokens, the Ocean ID is a cast of the

ERC-20 contract’s address to a uint256:

uint256 oceanID = uint256(uint160(contractAddress));

For ERC-721 and ERC-1155 tokens, there are potentially multiple tokens represented in each

smart contract. Therefore, we cannot use the contract’s address as the Ocean ID. We also cannot

use the token ID because that could result in a collision between two Ocean IDs. Instead, the

Ocean ID is derived from a hash of the contract’s address and the token ID:

uint256 oceanID = uint256(keccak256(abi.encodePacked(contractAddress, tokenID)));

3.2 Native Tokens

In contrast, a native token is a token issued by an Ocean-native primitive. An example of a

native token would be LP tokens issued by an Ocean-native AMM, such as Proteus[21]. The

source of truth for wrapped tokens is ultimately the external ledger that issued them. How-

ever, the source of truth for native tokens is the Ocean’s ERC-1155 ledger. A native token’s

Ocean ID is determined upon creation when an Ocean-native primitive calls the public function

registerNewToken(). The Ocean ID is a hash of the primitive’s contract address and a nonce.

uint256 oceanID = uint256(keccak256(abi.encodePacked(primitiveAddress, nonce)));

3.3 Token Authority

In addition to the standard ERC-1155 mappings, the Ocean has one additional mapping, tokensToPrimitives,

which maps a uint256 (Ocean ID) to an address (primitive). This mapping determines which
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native token is under the “authority” of which external smart contract. Authority is given to

the contract address of the primitive that creates the token.

Wrapped tokens do not have a formal entry in the tokensToPrimitives mapping because the

external ledger has implicit authority over the wrapped token. Token authority is an important

principle to understand when discussing the Ocean’s accounting framework.

4 Accounting Framework for Ocean-Native Primitives

In order to understand the Ocean accounting framework, we must ask the question: What,

exactly, is a financial primitive? We define a financial primitive as something that takes a token

as input and then gives back another token as output. In other words, it converts one form of

value into another form of value. In this way, a primitive is not so different from a market that

exchanges one good for another.

4.1 Generalizing Accounting Logic to all Primitives

Consider what happens when Alice swaps 100 DAI for 99.9 USDC via an AMM (Table 1). If

we look at the accounting, 100 DAI is subtracted from Alice’s balance while being added to the

AMM’s balance, and 99.9 USDC is added to Alice’s balance while being subtracted from the

AMM’s balance.

This pattern also holds when depositing into a lending pool (Table 2). Alice deposits 100 DAI

into Aave, receiving aDAI in return (aDAI is an interest-bearing token that represents a claim

on the underlying DAI). The one difference from the AMM swap is that aDAI is not subtracted

from Aave’s balance because Aave is the issuer of aDAI and instead mints new supply (i.e. Aave

has “authority” over aDAI).

As seen in Table 3, we can generalize this transaction pattern. Token X is the “input token,”

which is added to the primitive’s balance. Token Y is the “output token,” which is added to

Alice’s balance. The “input amount” is ∆x and the “output amount” is ∆y. Alice can specify

either the input amount or the output amount, but never both. The amount specified by Alice

is referred to as the “specified amount.” The amount computed by the primitive is referred to

as the “computed amount.”

DAI Balance USDC Balance

Alice −100 +99.9

AMM +100 −99.9

Table 1: AMM Accounting
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DAI Balance aDAI Balance

Alice -100 +100

Aave +100 -0

Table 2: Lending Pool Accounting

X Balance Y Balance

Alice −∆x +∆y

Primitive +∆x or 0 −∆y or 0

Table 3: Generalized Primitive Accounting

With this abstraction, we can deconstruct a primitive interaction into three steps:

1. Alice determines the input token (x), the output token (y) and specifies either the input

amount (∆x) or the output amount (∆y).

2. The primitive determines the computed amount based on Alice’s specified amount.

3. The input and output amounts (∆x, ∆y) are added to and subtracted from the appropriate

balances.

4.2 Encoding an Interaction

The Ocean’s purpose is to execute primitive interactions as specified by Alice. Her instructions

are encoded by the Interaction struct:

struct Interaction {

bytes32 interactionTypeAndAddress;

uint256 inputToken;

uint256 outputToken;

uint256 specifiedAmount;

bytes32 metadata;

}

This struct encodes the information both for primitive interactions and for external ledger

interactions. The interactionTypeAndAddress is a bytes array that contains both the interac-

tion type and the address of the external contract with which Alice wants the Ocean to interact.

The interactionType is a helper variable so that the Ocean can appropriately parse the struct.

These two pieces of information, the transaction type and external contract address, are packed

together in order to save gas. The metadata field is used for ERC-721 and ERC-1155 unwraps.

It is also passed along to the primitive as a default, but it is up to the primitive how to use this

field. For example, a lending pool may have Alice set her desired collateralization ratio in the

metadata field. However, an AMM may not want to use metadata at all.
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4.3 Executing an Interaction

Once encoded, the interaction is executed by the _executeInteraction() private function. This

function is the primary workhorse of the Ocean. Figure 4 lays out the logic flow. For primitive

interactions, _executeInteraction() queries the primitive for the computed amount, calling

either computeOutputAmount() or computeInputAmount() depending on the interactionType.

Once the primitive returns the computed amount, the Ocean mints and burns the input and

output amounts from the associated balances as shown in Table 3.

The exception to this mint/burn pattern is if the primitive has issuing authority over the

input and/or output tokens. In that case, it does not make sense to update the primitive’s

balance. Instead, the total supply of that token is increased for output tokens or decreased for

input tokens. For example, when Alice deposits into an AMM, new LP tokens are minted and

added to her balance. The Ocean does not deduct LP tokens from the AMM’s balance.

4.4 Wrapping and Unwrapping Tokens

When interacting with external ledgers to wrap or unwrap tokens, the _executeInteraction()

function follows the same pattern as with primitive interactions. The external ledger’s contract

address is encoded in the interactionTypeAndAddress bytes array. For ERC-721 and ERC-

1155 tokens, the token ID is stored in the metadata field. For wraps, the specified amount is

how many sh- tokens the user wants to mint. For unwraps, the specified amount is how many

sh- tokens the user wants to burn.

To wrap a token, the Ocean calls the external ledger’s transferFrom() function to receive

the tokens from Alice. The Ocean then mints wrapped tokens to the user’s balance. To unwrap a

token, the Ocean burns wrapped tokens from Alice’s balance and then calls the external ledger’s

transfer() function to give the tokens to Alice.

4.5 Using Mints and Burns instead of Transfers

Although subtle, the choice to move tokens via minting and burning instead of the standard

ERC-1155 transfer() function is one of the largest differences between the Ocean’s accounting

and the status quo accounting practices in DeFi. There are two main advantages of this method:

• More flexibility

• Better gas efficiency

Any transfer can be decomposed into a mint and a burn; however, not every mint and

burn can be reverse engineered as a transfer. In that way, minting and burning tokens is more

fundamental than transferring tokens. For example, when depositing into an AMM, LP tokens

will be minted, they will not be transferred. Moreover, minting and burning tokens also works

for wrapping and unwrapping external tokens, whereas transfers do not. Hence, if the Ocean

used transfers for primitive interactions, then there would be significantly more code complexity.
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Figure 4: Abstract overview of executeInteraction
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The other major benefit of the mint/burn approach is that this method enables significant

gas savings when chaining together a sequence of interactions, which will be the subject of the

following section.

5 Composing Primitives on the Ocean

There are two basic public functions on the Ocean for Alice to interact with primitives:

• doInteraction()

• doMultipleInteractions()

The first function, doInteraction(), executes a single primitive interaction and contains

minimal logic. The second function, doMultipleInteractions(), executes a sequence of prim-

itive interactions and contains added logic to optimize the gas costs and provide more flexible

accounting. The gas cost optimizations revolve around the difference between writing data to

storage versus writing data to memory.

5.1 Tracking State Changes in Memory

As stated in Section 1.2, writing data to storage is one of the most expensive operations in the

EVM, costing between 5,000 gas and 20,000 gas. Chaining primitive interactions together, such

as swaps, can lead to unnecessary storage writes. For example, consider Alice swapping DAI

to USDC, then swapping USDC to USDT. During this sequence, Alice’s USDC balance first

increases, then decreases with a net change of zero. With ERC-20 ledgers, we would end up with

two storage writes that never needed to happen, not to mention the 2,600 gas cost from loading

the ERC-20 contract bytecode.

In contrast, writing to memory is an order of magnitude cheaper; the base cost to write a

uint256 to memory is only 3 gas[10]. The single biggest difference between status quo account-

ing practices and the Ocean is that changes to Alice’s balance during a sequence of interactions

are tracked in memory, not storage. Balances are only updated in storage after the sequence

concludes, avoiding redundant writes. In addition to saving gas, this approach gives Alice un-

precedented flexibility.

5.2 BalanceDelta

To track Alice’s balances in memory, the Ocean uses a struct called BalanceDelta:

struct BalanceDelta {

uint256 tokenId;

int256 delta;

}
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The tokenId field is the token’s Ocean ID. The delta field refers to the net change to Alice’s

balance. Note that because delta is an int rather than a uint, the net change can be negative.

Although not immediately obvious, this feature allows the Ocean to natively support arbitrarily

large flash mints[15] for tokens in its ERC-1155 ledger (see Appendix A).

At the start of the sequence, Alice passes to the Ocean an Interaction[] array. The Ocean

then initializes a BalanceDelta[] array, with an entry for each token with which Alice will

interact. All delta values are set to zero at the beginning. After a primitive returns the computed

amount, the Ocean does not mint or burn tokens directly to Alice’s balance in storage. Instead,

the Ocean increments and decrements the BalanceDelta[] array, keeping a running tally of the

net change to Alice’s balances. The Ocean does not track changes to a primitive’s balance in

memory because doing so would not be worth the added complexity.

5.3 Writing State Changes to Storage

Once all interactions have been executed, the Ocean batch mints and burns tokens to Alice’s

account. Positive delta values are minted, negative are burned, and there are no storage writes

for zero values. If the Ocean used transfers instead of mints and burns, then the BalanceDelta

method would be infeasible. Figure 5 shows the logic flow of a multi-interaction sequence.

Figure 5: Abstract overview of doMultipleInteractions()
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6 Example of a Composing Primitives on the Ocean

In this section we will demonstrate a simple end-to-end swap from DAI to USDC via an Ocean-

native AMM. More complicated examples are provided in Appendix B as well. First, we will

show the Interaction[] array. Then we will walk through the accounting.

At the start of the sequence, Alice has 100 DAI, but no USDC nor tokens held in the

Ocean. Figure 6 shows the starting balances for Alice, the AMM and the Ocean. Note how

the BalanceDelta[] values are initialized to zero.

Figure 6: Initial state of the ledgers before the first interaction

The first interaction wraps 100 DAI into the Ocean. We specified the amount in 18 decimals

because that is the convention for all fungible Ocean tokens. Alice is converting her ERC-20 DAI

to the Ocean’s ERC-1155 shDAI. Figure 7 shows the intermediate balances after the interaction.

Alice’s shDAI is tracked in the BalanceDelta[] array.

Interaction wrap {

bytes32 interactionTypeAndAddress = {WrapErc20, DAI};

uint256 inputToken = 0;

uint256 outputToken = 0;

uint256 specifiedAmount = 100*10^18;

bytes32 metadata = 0;

}
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Figure 7: Interaction 1: Alice wraps 100 DAI into the Ocean. (Red indicates a

decrease; green indicates an increase)

The second interaction swaps 100 shDAI for 99.9 shUSDC (Figure 8). Interaction type 7

denotes an Ocean-native primitive interaction where Alice specifies the input amount.

Interaction swap {

Bytes32 interactionTypeAndAddress = {ComputeOutputAmount, AMM};

uint256 inputToken = shDAI;

uint256 outputToken = shUSDC;

uint256 specifiedAmount = 100*10^18;

bytes32 metadata = 0;

}
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Figure 8: Interaction 2: Alice swaps 100 shDAI for 99.9 shUSDC

The third interaction unwraps USDC from the Ocean and sends it to Alice. Interaction type

1 denotes an ERC-20 unwrap. The specifiedAmount, set to max, is interpreted by the Ocean

as an opcode. The Ocean queries the BalanceDelta[] array and substitutes the current delta

value as the specified amount. We use the max opcode because when we are generating the

Interaction[] array, we do not know the exact swap rate between shDAI and shUSDC. Thus

we do not know the exact amount of shUSDC we will need to unwrap. However, we can count

on the BalanceDelta tracking the exact amount remaining. By instructing the Ocean to use the

remainder, Alice is guaranteed not to be holding small amounts of shUSDC at the end of the

transaction. Figure 9 shows the state of the ledger.

Interaction unwrap {

bytes32 interactionTypeAndAddress = {UnwrapErc20, USDC};

uint256 inputToken = 0;

uint256 outputToken = 0;

uint256 specifiedAmount = max;

bytes32 metadata = 0;

}
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Figure 9: Interaction 3: Alice unwraps 99.9 USDC out of the Ocean

Lastly, the Ocean reconciles the BalanceDelta[] array with Alice’s balance in storage. In

this case, there are no net changes to Alice’s Ocean ERC-1155 balances, hence there are no

storage writes.

7 Ocean Performance

As stated in Section 2.1, the first criterion with which to assess the Ocean is gas savings. The

second is how much additional smart contract code, if any, is needed to compose primitives. For

the latter, the Ocean has built-in logic to compose Ocean-native primitives (see Section 5), so it’s

clear that no additional smart contract code is necessary. Hence, this section will focus entirely

on gas savings.

There are some initial caveats to address. A lot of variables go into determining gas costs[10].

For example, writing a new uint256 to storage costs 20,000 gas, while overwriting an existing

uint256 costs only 5,000 gas (see Section 1.2). In all of our tests, we will calculate gas based on

over-writing existing storage whenever possible.

We can break down gas costs into two parts: the fixed cost and the marginal cost. The

fixed cost is the cost to execute a single primitive interaction. The marginal cost is the amount

the cost increases for each subsequent primitive interaction. For example, if interacting with one

primitive costs 100,000 gas while interacting with two primitives costs 150,000 gas, then the fixed

cost would be 100,000 gas and the marginal cost for the second interaction would be 50,000 gas.

When composing one or two primitives, the fixed cost will be more important to the total cost.

However, as we compose more primitives, the marginal cost will start to dominate.

We will conduct three tests, swapping two tokens through the Ocean via Ocean-native AMMs.
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We will use a constant sum AMM[5], keeping the bonding curve simple in order to focus our

results on the Ocean per se, and not the AMM logic. Our first test will use the Ocean, without

any of its interaction sequencing logic, to serve as a baseline for comparison. This will emulate

the status quo method of composing primitives in DeFi. Each swap will involve its own function

call to the Ocean, with a wrap and unwrap, going through a different Ocean-native AMM each

time.

Our second and third tests will take full advantage of the Ocean’s interaction sequencing

logic. The second test will split the swap through n different Ocean-native AMMs, with only

one wrap and unwrap. The third test will chain swaps through n different AMMs. The output

from AMM i will be the input for AMM i+ 1.

Figure 10 shows the marginal costs of each test and Figure 11 shows the total cost. We can

see that the marginal cost of both Test 2 and Test 3 are substantially lower than the baseline.

Averaging between the two, the marginal cost is approximately four times lower when we compose

primitives on the Ocean versus using the status quo method. As a result, the total cost of

composing 10 primitives is also substantially lower. Averaging Test 2 and Test 3, the total cost

after the tenth interaction is three times lower than the baseline. Any primitive deployed onto

the Ocean will automatically inherit these gas savings.

Figure 10: Marginal cost per primitive interaction
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Figure 11: Total cost per primitive interaction

8 Ocean Benefits

The Ocean and the ecosystem that grows around it will bring significant benefits to end users,

developers of Web3 applications, and developers of new primitives. For end users, the Ocean will

improve UX by saving substantial amounts of gas and eliminating the time lost while waiting

for multiple transactions to process. In short, they will save both time and money.

Instead of separately integrating with every primitive, Web3 application developers will only

need to integrate with one smart contract: the Ocean. They will then have access to every

Ocean-native primitive. As more primitives join the ecosystem, Web3 developers can seamlessly

incorporate them into their application.

More importantly, these developers can now compose primitives without needing to write or

deploy specialized smart contracts. No Solidity required. By reducing the barriers for Web3 apps

to compose primitives, developers can offer increasingly flexible and complex financial services

to their users. For example, NFT markets built on the Ocean can leverage liquidity from Ocean-

native AMMs so that users can become currency agnostic, meaning they can buy and sell NFTs

using any currency they choose, ETH, USDC, DAI, etc.

Perhaps the biggest beneficiaries will be teams building new primitives. Ocean-native primi-

tives are simpler to design because they only need to implement the business logic; the Ocean will

handle the accounting logic. Additionally, by connecting to the Ocean, primitives will become

part of a larger network. When two or more primitives are composed together, both primitives

benefit. For example, when an AMM is composed with a lending pool to offer leverage, the

AMM gets more trade volume and the lending pool gets more deposits.
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The more primitives that join the network, the more options for composability, and the more

each individual primitive benefits. There is a multiplicative network effect. To put things another

way: would you rather be a lonesome tree in the middle of the desert? Or would you rather be

a tree in the rainforest, surrounded by a vibrant ecosystem?

When the Ocean first launches, the ecosystem will start out empty. However, Ocean-native

primitives will be at no disadvantage versus non-native primitives when it comes to gas costs

and ease of composability. Furthermore, Shell Protocol will employ tokenomic mechanisms to

bootstrap growth of the network.

9 Conclusion

Composing primitives is difficult because the system architecture of DeFi is muddled by siloed

token ledgers and monolithic financial primitives. The Ocean is a new paradigm for DeFi that

is designed to seamlessly and efficiently compose any type of primitive: AMMs, lending pools,

algorithmic stablecoins, NFT markets, or even primitives yet to be invented. Composing prim-

itives on the Ocean can save up to four times the marginal gas cost and requires no additional

smart contracts beyond the core protocol. Not only are primitives built on the Ocean simpler,

they also become part of a larger, composable ecosystem.
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A Flash Loans on the Ocean

As noted previously, the BalanceDelta[] array can have negative entries. In that way, this tempo-

rary ledger serves as a debit and credit system during the interaction sequence. As a consequence,

Alice can spend money she doesn’t have, provided she can make up the difference by the end of

the sequence (see Appendix B.3 for an example).

Although not immediately obvious, the Ocean natively supports arbitrarily large flash mints[15]

for tokens in its ERC-1155 ledger. The limit is only constrained by the size of an int256, which

is roughly equal to the number of particles in the observable universe. Anyone in the world can

be an ephemeral Mansa Musa[25].

Because flash mints are perfunctory, arbitraging prices between Ocean-native primitives is

extremely gas efficient and relatively easy. No special smart contracts are needed. In-Ocean flash

mints can also be unwrapped, resulting in an external flash loan[11], a cheap source of capital to

be used outside the protocol. To be clear, external flash loans are constrained by the amount of

tokens wrapped in the Ocean. Flash mints only apply to the internal ledger.

B Examples of doMultipleInteractions()

The Ocean is extremely flexible and thus far we have focused on how it works and the gas

efficiency, but not what it is capable of. This section will provide more examples of what is

possible to do on the Ocean.

B.1 LP into an AMM

In this example, Alice will deposit DAI and USDC into an AMM on the Ocean, minting LP

tokens. Before processing the interactions, the Ocean initializes the BalanceDelta[] array

(Figure 12).
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Figure 12: Initial state of the ledger before LP

In the first interaction, Alice wraps DAI into the Ocean, minting shDAI (Figure 13).

Interaction wrapDAI {

bytes32 interactionTypeAndAddress = {WrapErc20, DAI};

uint256 inputToken = 0;

uint256 outputToken = 0;

uint256 specifiedAmount = 50*10^18;

bytes32 metadata = 0;

}

Figure 13: Interaction 1: Alice wraps 50 DAI into the Ocean
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In the second interaction, Alice wraps USDC, minting shUSDC (Figure 14).

Interaction wrapUSDC {

bytes32 interactionTypeAndAddress = {WrapErc20, USDC};

uint256 inputToken = 0;

uint256 outputToken = 0;

uint256 specifiedAmount = 50*10^18;

bytes32 metadata = 0;

}

Figure 14: Interaction 2: Alice wraps 50 USDC into the Ocean

In the third interaction, Alice deposits shDAI into the AMM, minting LP tokens (Figure 15).

Interaction depositDAI {

bytes32 interactionTypeAndAddress = {ComputeOutputAmount, AMM};

uint256 inputToken = shDAI;

uint256 outputToken = LP;

uint256 specifiedAmount = 50*10^18;

bytes32 metadata = 0;

}
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Figure 15: Interaction 3: Alice deposits 50 shDAI into the Ocean

In the fourth and final interaction, Alice deposits shUSDC into the AMM, minting LP tokens

(Figure 16).

Interaction depositUSDC {

bytes32 interactionTypeAndAddress = {ComputeOutputAmount, AMM};

uint256 inputToken = shUSDC;

uint256 outputToken = LP;

uint256 specifiedAmount = 50*10^18;

bytes32 metadata = 0;

}

Figure 16: Interaction 4: Alice deposits 50 shUSDC into the Ocean
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Once all interactions have been processed, the Ocean writes the BalanceDelta[] array to

storage in the Ocean’s ERC-1155 ledger (Figure 17).

Figure 17: Final state of the ledger after all interactions have been executed.

B.2 Purchasing an NFT after a Swap

In this example, Alice will transact in the opposite direction from the previous examples. Instead

of specifying how much she will give to the primitives, Alice will specify how much she wants

to receive. Because the BalanceDelta can hold negative values, this type of transaction pattern

is feasible. Before processing the interactions, the Ocean initializes the BalanceDelta[] array

(Figure 18).

Figure 18: Initial state of the ledger before NFT purchase

In the first interaction, Alice unwraps the NFT from the Ocean (Figure 19). Alice is able to
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do this because the BalanceDelta can go negative.

Interaction unwrapNFT {

bytes32 interactionTypeAndAddress = {UnwrapErc721, NFT};

uint256 inputToken = 0;

uint256 outputToken = 0;

uint256 specifiedAmount = 1;

bytes32 metadata = tokenID;

}

Figure 19: Interaction 1: Alice unwraps the NFT from the Ocean

In the second interaction, Alice purchases the NFT from the exchange using USDC (Figure

20). She does not specify how much USDC she will give to the exchange, but instead specifies

that she wants to purchase the NFT. The exchange then sets the price.

Interaction purchaseNFT {

bytes32 interactionTypeAndAddress = {ComputeInputAmount, NFTMarket};

uint256 inputToken = DAI;

uint256 outputToken = NFT;

uint256 specifiedAmount = 1;

bytes32 metadata = 0;

}
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Figure 20: Interaction 2: Alice purchases the NFT from the exchange using USDC

In the third interaction, Alice swaps DAI for USDC (Figure 21). She specifies the amount

of USDC she would like to purchase (rather than how much DAI she would like to swap). She

uses the max opcode to instruct the Ocean to use her outstanding USDC debit held in the

BalanceDelta[] array. She does this because it guarantees that she won’t have any outstanding

debits or credits to her shUSDC balance at the end of the transaction sequence.

Interaction swap {

bytes32 interactionTypeAndAddress = {ComputeInputAmount, AMM};

uint256 inputToken = USDC;

uint256 outputToken = DAI;

uint256 specifiedAmount = max;

bytes32 metadata = 0;

}

Figure 21: Interaction 3: Alice swaps DAI for USDC

29



In the fourth and final interaction, Alice wraps her DAI into the Ocean in order to pay for

the swap (Figure 22). She uses the max opcode because she will not know for certain the exact

amount of DAI she had to swap in the previous interaction. This ensures that she won’t have

any outstanding debits or credits to her shDAI balance at the end of the transaction sequence.

Interaction wrapDAI {

bytes32 interactionTypeAndAddress = {WrapErc20, DAI};

uint256 inputToken = 0;

uint256 outputToken = 0;

uint256 specifiedAmount = max;

bytes32 metadata = 0;

}

Figure 22: Interaction 4: Alice wraps DAI into the Ocean

At the end of the sequence, the BalanceDelta[] array has only zero values. Hence, there is

no need to update Alice’s balances in storage.

B.3 Arbitrage Trade via Internal Flash Mint

In this example, Alice will take advantage of an arbitrage opportunity across three different

AMMs using a flash mint. Before the initial transaction, the Ocean initializes the BalanceDelta[]

array (Figure 23).
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Figure 23: Initial state of the ledger before the trade

In the first interaction, Alice swaps shDAI for shUSDC (Figure 24). Because the BalanceDelta

can go negative, Alice is able to spend shDAI she does not own. Effectively, new shDAI is tem-

porarily minted during the lifecycle of the transaction sequence.

Interaction swapDAI {

bytes32 interactionTypeAndAddress = {ComputeOutputAmount, AMM1};

uint256 inputToken = shDAI;

uint256 outputToken = shUSDC;

uint256 specifiedAmount = 50;

bytes32 metadata = 0;

}
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Figure 24: Interaction 1: Alice swaps shDAI for shUSDC

In the second interaction, Alice swaps shUSDC for shUSDT (Figure 25).

Interaction swapUSDC {

bytes32 interactionTypeAndAddress = {ComputeOutputAmount, AMM2};

uint256 inputToken = shUSDC;

uint256 outputToken = shUSDT;

uint256 specifiedAmount = max;

bytes32 metadata = 0;

}
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Figure 25: Interaction 2: Alice swaps shUSDC for shUSDT

In the third and final interaction, Alice swaps shUSDT for shDAI (Figure 26). Note that

Alice now has a positive balance of shDAI in her BalanceDelta.

Interaction swapUSDC {

bytes32 interactionTypeAndAddress = {ComputeOutputAmount, AMM2};

uint256 inputToken = shUSDC;

uint256 outputToken = shUSDT;

uint256 specifiedAmount = max;

bytes32 metadata = 0;

}
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Figure 26: Interaction 3: Alice swaps shUSDT for shDAI

At the end of the sequence, the Ocean increments Alice’s balance of shDAI in storage (27).
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Figure 27: Final state of the ledger after all interactions have been executed
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